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7 Abstract

8 This paper comments on some of the different numerical techniques commonly employed in evaluating Cauchy

9 singular integrals of the first kind; e.g. as pertaining to 2D through cracks in a brittle material undergoing Mode I

10 loading. In addition, a different more direct method is proposed here. Also, two different ways to calculate the stress

11 intensity factor (KI) are contrasted. The accuracy attained by the different methods in calculating KI, and the factors

12 affecting the calculation, are compared. Finally, comments on calculating the stress field of a 2D crack and important

13 considerations are presented.

14 � 2003 Published by Elsevier Science Ltd.
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16 1. Introduction

17 Fracture mechanics is an ever-growing science due to its important practical aspects. Not surprisingly

18 therefore, researchers have given a lot of attention to the solution of a variety of cracks problems of dif-
19 ferent geometry and under a variety of loading modes. One of the earliest and more fundamental problems

20 in fracture mechanics is that of determining the stress field associated with the presence of a 2D through

21 crack in a brittle material subjected to Mode I crack opening. A related problem is that of accurately

22 determining the stress intensity factor (KI) at the tip of the crack. KI is a fundamental quantity in fracture

23 mechanics as it is characteristic of the stresses of a certain crack (i.e. geometry), in the near tip region, and

24 under certain load distribution (Hills et al., 1996). The value of KI also governs crack propagation and its

25 accurate determination is strongly desirable.

26 In dealing with 2D crack problems under Mode I loading (or shearing Mode II for that matter) a Cauchy
27 singular integral of the first kind arises in the formulation whose integrand is not all known (part of it is)

28 but yet its determination is desired. Once the unknown part (called ‘‘the regular part of the dislocation

29 density function’’) of the integrand is determined, KI can be calculated from it as will be discussed later.
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30 Also, the crack stresses can be calculated using such solution. The integrand is singular at both crack ends

31 and at interior points along the crack. The evaluation of such integrals has stimulated much good work on

32 devising numerical collocation methods or schemes for this purpose. In subsequent sections, the use of these

33 methods in determining KI is presented. For example, it will be shown that increasing the number of
34 collocation points is not necessarily always desirable as intuitively might be thought. In addition, a different

35 more direct, and somewhat simpler, method for the evaluation of Cauchy singular integrals is presented.

36 The factor KI can be determined via two routes; one involves a numerical limiting procedure and the

37 other relates KI directly to the crack displacement gradient at the tip (see Eq. (2.22) of Hills et al., 1996). In

38 the latter definition, KI turns out to be directly calculable if the sought regular part of the dislocation

39 density function (see last paragraph) is known at the tips. Here, we comment on the two routes for finding

40 KI and how the second routes� accuracy is affected by the peculiarities and special features of the method

41 used in the singular integral evaluation.
42 Once the regular part of the dislocation density function is determined, it will be possible to calculate the

43 stresses due to the presence of the loaded crack (see below). A knowledge of these stresses is very important,

44 especially for interaction problems where a crack can interact with other defects in the material. For ex-

45 ample, multiple cracks interact through their stress fields thus driving or inhibiting the growth of one

46 another or causing the generation of microcracks (see, e.g., Demir and Zbib, 2001). Other possibilities

47 would be the interaction of a crack with a dislocation(s), as the crack stress field will enter into the cal-

48 culation of the Peach–Koehler force acting on the dislocation, which in turn causes it to glide (Demir and

49 Gulluoglu, 1999). Recently, attention has been given to interaction problems of a dislocation(s) with crystal
50 defects in the context of emerging dislocation dynamics simulations (Khraishi, 2000). The importance here

51 lies in the fact that the dislocation (through its motion) represents the fundamental plastic deformation

52 mechanism in crystalline solids. Hence, it is important to account for its interaction with other defects in the

53 solid (such as cracks), which could affect the dynamics of its motion.

54 There are a few ways to evaluate Cauchy singular integrals in the literature. The most commonly used

55 method is perhaps the Gauss–Chebyshev (GC) quadrature used by Erdogan and Gupta (1972) and Er-

56 dogan et al. (1973). Theocaris and Ioakimidis (1977) considered an alternative method; the Lobatto–

57 Chebyshev (LC) quadrature. Gerasoulis and Srivastav (1981) developed a piece-wise linear polynomial
58 method and Gerasoulis (1982) developed a piece-wise quadratic polynomial method. Results from the

59 above methods are compared below. Demir et al. (1992) applied a collocation method to solve singular

60 integral equations arising in cylindrical crack problems. Their technique has resemblance to a weighted

61 residual method. Kurtz et al. (1994) presented a piece-wise polynomial method for evaluating Cauchy

62 integrals of the first and second kinds. Other notable methods for solving singular integral equations in-

63 clude the Galerkin–Petrov method, which is based on the use of two sets of orthogonal polynomials (El-

64 liott, 1983), the Galerkin–Bubnov method, which was used by Nazarenko (1986) to numerically solve the

65 problem of sub-surface cracks in a half-space subjected to compression. Finally, the works of Rathsfeld
66 (2000), Junghanns and Silbermann (2000) and Monegato and Pr€oossdorf (1993), and their co-workers,

67 among others, provided careful convergence and numerical analysis studies of some previously known

68 methods for solving singular integral equations. It has to be emphasized here that the above list of methods

69 used in solving singular integral equations is not comprehensive and other equally-worthy methods exist in

70 the literature. The current study is a focus study on some of the available and common methods that tries to

71 put them in context, with regard to advantages and disadvantages, something that is typically lacking in

72 other works.

73 In summary therefore, this paper comments on some of the different methods used to evaluate Cauchy
74 singular integrals, and any associated peculiarities, as pertaining to the determination of KI at the crack

75 tips. It contrasts the results from these method with another more direct method presented here. In ad-

76 dition, the calculation of KI through numerical limiting is examined. Finally, points pertaining to the

77 calculation of crack stresses are made especially in relation to interaction problems with other defects.
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78 2. The Cauchy singular integral

79 Consider a 2D through crack of length 2a lying in a brittle material and to which an xy coordinate

80 system is attached as shown in Fig. 1. The origin of this system is fixed to the crack�s midpoint and the crack
81 extends from x ¼ �a to x ¼ þa. The r and h are polar coordinates centered at the crack tip. The crack is

82 subjected to remotely applied tensile loading, r1
yy ðx; y ¼ 0Þ, normal to its face.

83 We here briefly review the solution of such a crack problem using the distributed dislocation method

84 (Hills et al., 1996). This problem can be treated as a perturbation problem whereas the stress state at any

85 field point P in the elastic medium is obtained via the linear superposition of the remote stress field and a

86 corrective solution that satisfies the boundary conditions (BCs) of the problem. A self-consistent method to

87 generate the corrective solution is to consider it due to a continuous distribution of dislocations (each with a

88 Burgers vector in the y-direction, dby). Fig. 1 shows one such dislocation at a distance n. Of course the
89 insertion of such fictitious dislocations will provide us with crack opening as expected from the loading.

90 Also, since the stress field of such dislocations decays as 1=d, where d is the distance from the dislocation

91 core, the stress field at infinity equals only that of the remotely applied stresses as physically conceived.

92 Finally (last BC for the problem), these dislocations provide us with extra or auxiliary stress terms to annul

93 the undesired tractions created on the crack face by the applied stresses.

94 Since we have a distribution of dislocations, we can define, for the interval between any two consecutive

95 points n and n þ dn along the crack, a dislocation density function ByðnÞ such that ByðnÞ ¼ dby=dn. Now,

96 the above statements on annulling traction at any point x between the tips can be stated mathematically as
97 follows:

�r1
yy ðx; 0Þ ¼

Z þa

�a

2l
pðj þ 1Þ

dby
x� n

; jxj < a: ð1Þ

99 The integrand in the above equation represents the stress in the y-direction at a point x along the crack, due

100 to a dislocation situated at point n whose Burgers vector is dby (see Hills et al., 1996). l is the shear

101 modulus, and j is Kolosov�s constant defined as ð3� 4mÞ and ð3� mÞ=ð1þ mÞ for plane strain and plane

102 stress conditions, respectively, where m is Poisson�s ratio. In all of the calculations below, a state of plane

103 strain was assumed. Taking the constants out, and replacing dby by ByðnÞdn, the ðx� nÞ�1
term left in the

104 integrand in (1) is called the ‘‘kernel’’ of the integral. It is obvious that this kernel, and thus the integral, is

Fig. 1. A 2D through crack under Mode I loading (tensile loading normal to the crack face). The crack�s plane is y ¼ 0 and extends

from �a < x < a. Point P is a field point in the material. A dislocation at distance n, used in the solution, is also shown.
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105 singular when x ¼ n. Such an integral is called a ‘‘Cauchy singular integral’’ and the whole equation is

106 called a ‘‘singular integral equation’’ that needs to be solved for the unknown function ByðnÞ.
107 It is easier and more standard to non-dimensionalize the last equation using the substitutions s ¼ n=a
108 and t ¼ x=a. This allows us to write the last equation as

� j þ 1

2l
r1
yy ðt; 0Þ ¼

1

p

Z þ1

�1

ByðsÞ
1

t � s
ds; jtj < 1: ð2Þ

110 Furthermore, the dislocation density function can be decomposed into two parts: an unknown function

111 /yðsÞ, called ‘‘the regular part of the density function’’, and a known function wðsÞ, called the ‘‘fundamental

112 solution’’, such that ByðsÞ is their product, i.e.,
ByðsÞ ¼ wðsÞ/yðsÞ; ð3Þ

114 where wðsÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
.

115 The form of the fundamental solution follows from asymptotic analysis (see Hills et al., 1996) and builds

116 into the solution the required singular behavior of a sharp crack at its tips (i.e. s ¼ 	1). This form of ByðsÞ is
117 substituted into Eq. (2) above before any further steps towards a solution are attempted.
118 There is yet another physical condition imposed on the problem above, and that is of no net dislocation as

119 one circles around the crack in a closed loop. Mathematically, this translates to the following so-called side

120 or closure condition:Z þa

�a
ByðnÞdn ¼

Z þ1

�1

ByðsÞds ¼ 0: ð4Þ

122 Now, numerical schemes available for solving the above-listed Cauchy singular equation (2) consist of

123 satisfying it on a set of collocation points tks (where k ¼ 1; . . . ;N � 1) along the crack line. The unknown

124 here are the values, or nodal values, of the function /yðsiÞ (where i ¼ 1; . . . ;N ) for a set of N nodal (or

125 integration) points, si�s, along the crack that are different from the collocation points, and to each of which

126 there is assigned a weight, Wi . Thus, the Cauchy singular integral on the right-hand side of Eq. (2), including

127 the 1=p factor, is converted to an algebraic summation over the nodal points, and the whole equation is

128 equivalent to a system of equations, each of which corresponding to a collocation point, as follows:

XN
i¼1

Wi
/yðsiÞ
tk � si

¼ � j þ 1

2l
r1
yy ðtk; 0Þ; k ¼ 1; . . . ;N � 1; ð5Þ

130 where the weights, Wi �s, are a function of the points, si�s (or index i). For the GC method, Wi ¼ 1=N for

131 i ¼ 1; . . . ;N . For the LC method, Wi ¼ 1=ð2N � 2Þ for i ¼ 1 or N , and Wi ¼ 1=ðN � 1Þ for any other i. The
132 si�s and tk �s are also a function of position, or their index. For GC, si ¼ cosðpð2i� 1Þ=ð2NÞÞ for

133 i ¼ 1; . . . ;N . For LC, si ¼ þ1 for i ¼ 1, )1 for i ¼ N , and cosðpði� 1Þ=ðN � 1ÞÞ for any other i. Finally,
134 tk ¼ cosðpk=NÞ for GC and cosðpð2k � 1Þ=ð2N � 2ÞÞ for LC, for k ¼ 1; . . . ;N � 1. For the method by

135 Gerasoulis (1982), Gerasoulis (G) method, the ensuing system of equations looks similar to (5) above

136 without the kernel term in the summation or the minus sign on the right-hand side, and with the weights

137 given by lengthier expressions and thus are not provided here. Such an algebraic description of the Cauchy

138 integral (Eq. (2)) is attained by assuming a functional form for /y . This form is typically a continuous, or

139 piece-wise continuous, polynomial.

140 Finally, the side condition (Eq. (5)) also reduces to an algebraic equation of the form:

XN
i¼1

ki/yðsiÞ ¼ 0; ð6Þ
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142 where ki ¼ þ1 for the GC method. For the LC method, ki ¼ þ1=2 for i ¼ 1 or N , and +1 for any other i.
143 For the G method, the reader is referred to Gerasoulis (1982) for lengthier ki expressions.

144 The set of equations (5) and (6) represent a system of N linear algebraic equations in N unknowns which

145 can be solved, via computer programming, using the solver of choice (e.g. Gauss elimination) for the
146 unknown /y nodal values.

147 We now present an alternative more direct method for solving the Cauchy integral equation (2). In this

148 method, we divide the crack length into a number of N intervals or elements, and assume that the unknown

149 function /y is piece-wise linear over each element, i.e. it can be represented by a Lagrange linear inter-

150 polation polynomial. Hence for any element i, /y can be expressed as

/yðsÞ ¼
sj � s
Li

� �
Ui þ

s� si
Li

� �
Uj; ð7Þ

152 where Ui and Uj are the two unknown, and yet to be determined, nodal end points of element i, and
153 Li ¼ sj � si is the element length. We will therefore have a total of N þ 1 unknown nodal values over the

154 crack length.

155 The integral in (2), call it I , after substitution of (3) into it, can be written, without approximation, as

156 follows:

I ¼
XN
i¼1

I i ¼
XN
i¼1

Z
i

/yðsÞ
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

� �
1

t � s

� �
ds; ð8Þ

158 where I i is the elemental integral, or contribution of element i.
159 Furthermore, substituting approximation (7) into the expression for I i, we get an approximate expres-

160 sion for I i as follows (noting that Ui and Uj are constants):

I i ¼
Z sj

si

sj � s
Li

� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� �

1

t � s

� �
ds

� 	
Ui þ

Z sj

si

s� si
Li

� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� �

1

t � s

� �
ds

� 	
Uj: ð9Þ

162 We will call the first integral in the last equation I1i and the second integral I2i. Note that the superscript i
163 here still references element i�s contribution(s).
164 Now the problem resides in integrating I1i and I2i both of which are singular integrals within their

165 interval or element, due to the kernel term, whenever t ¼ s in the interval. The strategy here is as before, we

166 would like to satisfy the Cauchy integral equation (2) in a point-wise fashion by evaluating the elemental

167 singular integrals at some collocation point, ti, within the element. We can parameterize the location of

168 collocation point ti within element i using the following relation:

ti ¼ si þ qLi; ð10Þ
170 where i ¼ 1; . . . ;N , and the parameter q is in the range 0 < q < 1. For simplicity of the discussion we will

171 pick q ¼ 0:5 for now, so that the collocation point is at the center of each element. Once this is decided and

172 in order to evaluate I1i and I2i in (9), one simply needs to pick integration points that are not coincident
173 with, i.e. different from, the element�s center or midpoint. This is facilitated, for example, through the use of

174 a Gauss–Legendre integration formula having an even number of integration or Gaussian points, Ng (see

175 Chapra and Canale, 1998). The reason for picking formulas with even as opposed to odd number of in-

176 tegration points is that the former points avoid the singularity at the element�s center whereas the latter

177 collapse on it by default. It will be shown later that because integrals I1i and I2i are highly non-linear, a

178 relatively large number of integration points in the Gauss–Legendre formula will be needed in order to

179 achieve highly accurate estimates of the integrals. As it turns out, this will not have a significant negative

180 impact on the computational effort involved.
181 We now apply a similar procedure as above to the side or closure condition, Eq. (4). Here, we call the

182 integral in (4) J and immediately write:
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J ¼
XN
i¼1

J i ¼
XN
i¼1

Z
i

/yðsÞ
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

� �
ds; ð11Þ

184 where the J i�s are elemental integrals. Now substituting (7) into J i, we get:

J i ¼
Z sj

si

sj � s
Li

� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� �

ds
� 	

Ui þ
Z sj

si

s� si
Li

� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� �

ds
� 	

Uj: ð12Þ

186 Calling the first integral in (12) J1i and the second integral J2i, it is possible to evaluate both using a Gauss–

187 Legendre integration formula just as before. And since these integrals do not contain a singular kernel, they

188 are well-behaved and either a small even or odd number of integration points suffices for accurately esti-

189 mating them.

190 Finally, applying Eq. (8), with (9), N times (once for each collocation point tk, k ¼ 1; . . . ;N , see (10)) and

191 combining with them Eqs. (11) and (12), one obtains a system of N þ 1 linear algebraic equations in N þ 1
192 unknowns (the U nodal values), which can be conveniently solved using the solver of choice on a computer.

193 Note that if one expresses such ensuing system in matrix form as ½A�fUg ¼ fBg, where ½A� is a coefficient

194 matrix, fBg is a forcing-like vector, and fUg is the solution vector, then the following applies to the ith
195 equation, where i ¼ 1; . . . ;N :

Aði; kÞ ¼
I1kðtiÞ; k ¼ 1;
I2k�1ðtiÞ þ I1kðtiÞ; k ¼ 2; . . . ;N ;
I2kðtiÞ; k ¼ N

8<
: ð13Þ

197 and

BðiÞ ¼ �p
ðj þ 1Þ
2l

r1
yy ðti; 0Þ: ð14Þ

199 And for the (N þ 1)th equation, we have

AðN þ 1; kÞ ¼
J1k; k ¼ 1;
J2k�1 þ J1k; k ¼ 2; . . . ;N ;
J2k; k ¼ N

8<
: ð15Þ

201 and

BðN þ 1Þ ¼ 0; ð16Þ

203 where in the above the notation (ti) means evaluated at ti.
204 It is appropriate here to comment on the error involved in determining the I and J integrals (e.g. Eqs. (9)

205 and (12)) in the method presented here. Since these integrals are evaluated using a Gauss–Legendre for-

206 mula, the true error, Et, involved in the evaluation is given by (Carnahan et al., 1969) to be

Et ¼
22nþ3½ðnþ 1Þ!�4

ð2nþ 3Þ½ð2nþ 2Þ!�3
f ð2nþ2ÞðnÞ; ð17Þ

208 where n ¼ Ng � 1, and f is the function in the integrand, and f ð2nþ2ÞðnÞ is the (2nþ 2)th derivative of the

209 function after the change of variable with n located somewhere on the interval from )1 to 1. Without going
210 into a very rigorous mathematical proof procedure, it will be seen later on (see Table 2), that the error

211 resulting from Eq. (17) is inversely proportional to the number of Gaussian or integration points Ng.
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212 3. The stress intensity factor KI

213 The accuracy of the above methods for solving the Cauchy singular equation will now be contrasted

214 based on their estimates of the KI value for the crack, for loading cases with known analytical solutions. We
215 mentioned earlier that there are two common ways to calculate KI for a crack. One of these consists of a

216 numerical limiting procedure where KI is defined as (see, e.g., Hills et al., 1996):

KI ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
ryyðr; h ¼ 0Þ; ð18Þ

218 where the parameters r and h are defined in Fig. 1, and the ryy here represents the combined stress due to

219 both external loading and the crack field (and is given in Eq. (22) below).

220 This method, however, of calculating KI, albeit correct, turns out to be a not so accurate method for the

221 calculation and special care should be taken in interpreting the results. More detailed comments on this

222 method will be presented later on. First though, we present a different method that is less prone or sensitive

223 to calculation errors, and which can be used to contrast the methods presented in Section 2 for solving the
224 Cauchy singular equation.

225 Hills et al. (1996) show that for the Mode I crack, KI at s ¼ 	1 can be precisely described using the

226 following formula:

KIðs ¼ 	1Þ ¼ 	
ffiffiffiffiffiffi
pa

p 2l
ðj þ 1Þ/yðs ¼ 	1Þ: ð19Þ

228 Since the methods above (Section 2) can all provide estimates of the /y (s ¼ 	1) values, as part of the

229 solution procedure, one can use these estimates to compare the relative accuracy of the methods and how

230 they perform against benchmark analytical solutions.

231 To find the value of /y (s ¼ 	1) using the GC method, one needs to interpolate via the Krenk�s inter-
232 polation formula (Krenk, 1975), for example. Note that interpolation potentially adds to the error in the

233 numerical solution of the problem. In the methods of LC, G and the method of this paper, no interpolation

234 is necessary and the values of /y (s ¼ 	1) correspond to the nodal value solutions at the crack tips.

235 The most intuitive and trivial comparison to make between the methods is to test them against the

236 analytical solution for the case when the external stress or loading is uniform across the crack length (i.e.

237 r1
yy ðx; 0Þ ¼ p). Here and in all what follows, p was set arbitrarily to 100 MPa. The exact analytical solution

238 in this case is known to be KIðx ¼ þaÞ ¼ p
ffiffiffiffiffiffi
pa

p
. For simplicity, the quantity a is taken to be of unit length in

239 all what follows, which basically has the effect of treating x as the non-dimensional variable s. We now
240 define our measure of error as et, called the true percent relative error, and given as

et ¼ 100� jðKth
I � Kcalc

I Þ=Kth
I j; ð20Þ

242 where K th
I and Kcalc

I are the theoretical and calculated values of the stress intensity factor, respectively.

243 In the above simple loading case, the methods of GC, LC, and G all give excellent results even for a very
244 small number of collocation points (Nc). For example, using Nc ¼ 4, et for the above methods is 9.92E)6,
245 2.8E)5, 9.92E)6, respectively. As one can see, all of these methods give essentially the same result for this

246 simple case (basically zero error) and there is no advantage for using one method over the other. In ad-

247 dition, no advantage is gained by increasing Nc. On the contrary, relatively large Nc values result in greater

248 et�s due to increased round-off errors (i.e. limited computer precision) in solving the system of equations.

249 For example, for Nc ¼ 200, the errors are 0.05, 0.054, and 0.33, respectively, and for Nc ¼ 800, the errors are

250 0.3, 1.44, 0.66, respectively.

251 For the simple case discussed above, the method presented in this paper does not perform as well in
252 determining the KI value. This is mainly due to the tortuosity and high non-linearity of integrals I1i and I2i.
253 Here, however, the error can be reduced significantly by using higher order Gauss–Legendre formulas (i.e. a

T.A. Khraishi, I. Demir / Mechanics Research Communications xxx (2003) xxx–xxx 7

MRC 778 No. of Pages 12, DTD=4.3.1

7 April 2003 Disk used SPS, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

254 larger number of integration or Gaussian points, Ng) in estimating these integrals. Abramowitz and Stegun

255 (1964) list tables of Gaussian integration points for large Ng�s. Table 1 shows that, for the current method, et
256 decreases with increasing Ng. However, increasing Nc (¼N in the current method, see Eqs. (8) and (11))

257 does not necessarily reduce et as explained earlier.
258 The method has one more degree of freedom that allows better estimation of KI. In Eq. (10), if one picks

259 a q value different from 0.5, it is possible to eliminate errors. For example, for Nc ¼ 30 and Ng ¼ 6, the error

260 et reduces to 0.032 if one chooses q as 0.505. This extra control provided by the q parameter in this paper is

261 similar to work done by Schmidt (1986) utilizing what is called ‘‘e-collocation’’.
262 Now, consider a different loading case from above, where the applied stress can be described as

r1
yy ðx; 0Þ ¼ pð1� jxj=aÞ: ð21Þ

264 The theoretical KI value here is given by Tada et al. (2000) as ð1� 2=pÞp ffiffiffiffiffiffi
pa

p
. For this case where the

265 applied stress gradient is discontinuous at x ¼ 0 but the stresses themselves are well-behaved, we plot et
266 versus Nc in Fig. 2 for the GC, LC, and G methods. We clearly observe violent oscillations in the GC and

267 LC methods. For example, for Nc ¼ 29, the error for the GC method is 0.64 (off limits in figure). This error

268 jumps down to 0.044 for Nc ¼ 34 and jumps up again to 0.18 for Nc ¼ 39. The same applies to the other two
269 methods. For example, for Nc ¼ 40, the error for the G method is 0.02 and jumps to 0.153 for Nc ¼ 50 and

270 sharply falls again to 0.006 for Nc ¼ 70. It is observed however, as supported somewhat in Fig. 2, that the G

271 method, in general, suffers from fewer oscillations. The reason for this is that it assumes a piecewise rep-

272 resentation of /y (see Eq. (7) for example) whereas the other two methods use polynomial interpolation

273 over the whole crack length. As generally accepted, piecewise interpolation should induce lesser oscillations

274 in the solution compared to polynomial interpolation (see, e.g., Chapra and Canale, 1998). Based on such

275 an argument, it is expected here that the current method, which is based on piecewise interpolation of /y ,

276 will also be less susceptible to oscillations, similar to the G method. Indeed, this is what is observed. For
277 example, if q ¼ 0:5 and Ng ¼ 48, the errors will be 1.45, 1.28, and 1.17 for Nc values of 20, 30, and 50,

278 respectively. Here, the method exhibits stability and decreasing errors with increasing Nc. The above

279 comments can be generalized to even more abrupt loading cases than in (21). It is therefore preferable to use

280 a method utilizing piecewise interpolation of /y when estimating KI via Eq. (19) over one that utilizes

281 polynomial interpolation over the whole crack length. For smooth variations of the applied stresses over

282 the crack face, any of the above-discussed methods would be suitable.

Table 1

The true percent relative error et in determining KI value, using the current method, for different Ng (number of Gaussian integration

points) and Nc (number of collocation points) values

Ng et

Nc ¼ 10 Nc ¼ 20 Nc ¼ 30 Nc ¼ 50

2 27.2007 27.3739 27.4326 27.4773

4 13.7861 13.8738 13.9042 13.9243

6 9.18857 9.24521 9.26509 9.27673

8 6.88741 6.92884 6.94391 6.95015

10 5.50711 5.53911 5.55166 5.55445

12 4.58749 4.61369 4.62425 4.62430

16 3.43856 3.45686 3.46505 3.46108

20 2.74986 2.76332 2.77000 2.76292

24 2.29085 2.30092 2.30731 2.29591

32 1.71753 1.72281 1.72941 1.71421

40 1.37364 1.37577 1.38165 1.36187

48 1.14438 1.14302 1.15107 1.12490

Here, q ¼ 0:5 in Eq. (10).
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283 Now regarding the estimation of KI values via the numerical limiting procedure in (18), we revert back to

284 the example of uniformly applied stress p from before. Here, we limit ourselves to the GC method to il-
285 lustrate the concepts. If one plots the variation of the ratio Kcalc=K th versus r for h ¼ 0 in Fig. 1, we obtain

286 Fig. 3. Here, we dropped the subscript I from Kcalc and K th since we are only considering Mode I in this

287 paper. In this figure, it is seen that, for any given N in (5), as we approach the crack tip at r=a ¼ 0, the ratio

288 of stress intensity factors decreases in value passing through the ideal ratio of unity at some distance ahead

289 of the tip. To approach the tip such that the ratio converges to unity, which is the definition of the limit in

290 (18), one basically needs to indefinitely increase the N value (i.e. solve a much bigger system of equations).

291 Although this result might not come at a great surprise, it illustrates nonetheless the point that Eq. (18)

292 provides us with an inaccurate and expensive way for determining the KI value at a crack tip. Instead, it is
293 much better as was illustrated earlier to utilize definition (19) for such determination.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 100 200 300 400
Nc

Fig. 2. A plot of the error et in estimating KI, for a crack subjected to the loading in Eq. (21), versus the number of collocation points

Nc, used in the Gauss–Chebyshev (GC), Lobatto–Chebyshev (LC), and Gerasoulis (G) methods.
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Fig. 3. A plot of Kcalc=K th versus r=a ratio in Fig. 1 for a Mode I crack (subjected to uniform tensile stress r1
yy ðx; 0Þ ¼ p), for different N

values in (5) and (6). Here, Kcalc is obtained from the GC method and K th ¼ p
ffiffiffiffiffiffi
pa

p
.
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294 4. The stress field of 2D cracks

295 One of the main goals of determining the dislocation density distribution via one of the previously

296 discussed methods, besides the determination of KI value, is to use it to determine the crack stress field. To
297 this end, to determine any planar component of stress at a field point, we need to sum up the contributions

298 of the infinitesimal dislocations distributed along the crack. Since our dislocation density function ByðsÞ is
299 continuous along the crack face, the summation becomes an integral. The planar crack stresses therefore

300 become

rxxðx; yÞ ¼
2l

pðj þ 1Þ

Z þa

�a
ByðnÞ

x� n
r4

½ðx� nÞ2 � y2�dn;

ryyðx; yÞ ¼
2l

pðj þ 1Þ

Z þa

�a
ByðnÞ

x� n
r4

½ðx� nÞ2 þ 3y2�dn þ r1
yy ðxÞ;

rxyðx; yÞ ¼
2l

pðj þ 1Þ

Z þa

�a
ByðnÞ

y
r4
½ðx� nÞ2 � y2�dn;

ð22Þ

302 where r2 ¼ ðx� nÞ2 þ y2 Note that for any field point P at (x; y), not lying on the crack face, the integrands

303 in (22) are well-behaved and none is singular.

304 Since the methods of Section 2 rely on discretizing the ByðsÞ function, the discretized form of equations
305 (22) is

rxxðx ¼ at; yÞ ¼ 2l
j þ 1

1

N

XN
i¼1

/yðsiÞ
ðt � siÞ½ðt � siÞ2 � ðy=aÞ2�

½ðt � siÞ2 þ ðy=aÞ2�2
; ð23Þ

ryyðx ¼ at; yÞ ¼ 2l
j þ 1

1

N

XN
i¼1

/yðsiÞ
ðt � siÞ½ðt � siÞ2 þ 3ðy=aÞ2�

½ðt � siÞ2 þ ðy=aÞ2�2
þ r1

yy ðatÞ; ð24Þ

rxyðx ¼ at; yÞ ¼ 2l
j þ 1

1

N

XN
i¼1

/yðsiÞ
ðy=aÞ½ðt � siÞ2 � ðy=aÞ2�
½ðt � siÞ2 þ ðy=aÞ2�2

: ð25Þ

309 The discretized forms, Eqs. (23)–(25), are provided here for the GC method. For the LC method, similar

310 expressions can be obtained. Finally, for the current method, we can list the following after forgoing some

311 details:

ryyðx ¼ at; yÞ ¼ 2l
pðj þ 1Þ

XN
i¼1

I iyy þ r1
yy ðatÞ;

rxyðx ¼ at; yÞ ¼ 2l
pðj þ 1Þ

XN
i¼1

I ixy ;

ð26Þ

313 where

I iyy ¼
Z sj

si

sj � s
Li

t � sffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ðt � sÞ2 þ 3ðy=aÞ2

½ðt � sÞ2 þ ðy=aÞ2�2
ds

" #
Ui þ

Z sj

si

s� si
Li

t � sffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ðt � sÞ2 þ 3ðy=aÞ2

½ðt � sÞ2 þ ðy=aÞ2�2
ds

" #
Uj;

I ixy ¼
Z sj

si

sj � s
Li

y=affiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ðt � sÞ2 � ðy=aÞ2

½ðt � sÞ2 þ ðy=aÞ2�2
ds

" #
Ui þ

Z sj

si

s� si
Li

y=affiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ðt � sÞ2 � ðy=aÞ2

½ðt � sÞ2 þ ðy=aÞ2�2
ds

" #
Uj:
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315 The rxx component can be stated in a similar fashion. The integrals in I iyy and I ixy above could probably be

316 evaluated analytically. However, preliminary attempts at doing so were not successful as the integrands are

317 very complex. Nonetheless, since these integrals, for a field point not belonging to the crack, are well-be-
318 haved and non-singular, they can be accurately estimated using numerical integration techniques (e.g. using

319 a Gauss–Legendre formula).

320 To demonstrate the use of the stress components equations, lets calculate the Peach–Kohler (PK) force

321 acting on an infinite edge dislocation situated, without loss of generality, at ðx; yÞ ¼ ða; 0:25aÞ in Fig. 1, and

322 whose line sense is out of the page. For simplicity, a ¼ 1 just as before. If the Burgers vector of the edge

323 dislocation, in the coordinates of Fig. 1, is b ¼ ðbx; 0; 0Þ, then the PK force will be given by sxybx. The
324 calculation of the PK force is important in newly emerging dislocation dynamics codes. For simplicity, we

325 can take b to be of unit strength or magnitude, i.e. bx ¼ 1. In this case, the value of sxy governs the
326 magnitude of the force on the dislocation.

327 If one uses material constants and uniformly applied tensile loading from above, the GC method gives

328 s�xy ¼ sxyl ¼ �1:366E)3. For this loading condition and Nc, the error et in estimating KI was essentially zero

329 (or more accurately 2.62E)5). We can therefore assume that this s�xy value is equal to the analytical stress,

330 and we thus denote it as srefxy ; the reference s�xy value. Now, if we calculate s�xy using the current method (with

331 Nc ¼ 20, q ¼ 0:5 and Ng ¼ 48), we get s�xy ¼ �1:364E)03. The percent relative error e here, defined as

332 e ¼ 100� jðs�xy � srefxy Þ=srefxy j, is equal to 0.146. We notice that although the current method is less accurate in

333 estimating the KI value (with an error of 1.14% according to Table 1), it provides an excellent estimate of
334 the PK force on the dislocation. Furthermore, Table 2 shows that even for smaller Nc values, one gets a

335 small e error. This is true so long as Ng is high enough (meaning as long as the estimate of the integrals in (9)

336 is accurate enough). For example, even for Nc as small as 3 (which will result in an extremely small system

337 to solve), the error e is just 1.23% if Ng ¼ 48. Of course, this error can even drop further for higher Ng�s.
338 What Table 2 also shows is that for any moderate choices of Ng and Nc, the error will be considerably small

339 (less than 10% at the maximum). The reason for this can be explained by Saint Venant�s principle. As long

340 as the field point is away from the crack a distance approximately equal to or less than the average spacing

341 between collocation points, then the error is expected to be small. For the current method, one needs to
342 augment the last statement with the condition that Ng also has to be high enough if small errors are desired.

343 5. Conclusions

344 Above, we presented a comparison between different methods in the literature for calculating KI value

345 for a 2D through crack. We also presented a different more direct method of solving Cauchy singular

346 equations of the first kind.

347 An important conclusion here is that the current method performs well over other methods whenever the

348 remote loading has a discontinuity or sharp gradients along the crack length. This is due to the fact that it

349 assumes piecewise element or interval interpolation over the crack length. Other methods that do not utilize

350 piecewise interpolation can suffer oscillations in the solution in the case where the load exhibits sharp
351 gradients along the crack. The current method, however, relies on numerical integration using a relatively

Table 2

The error e in s�xy calculation in Section 4, for different Ng and Nc values in the current method

Ng e

Nc ¼ 20 Nc ¼ 10 Nc ¼ 5 Nc ¼ 4 Nc ¼ 3

48 0.1458 0.3212 0.7234 0.9225 1.2342

20 0.3527 0.7712 1.7393 2.2177 2.9651

6 1.1993 2.6101 5.8586 7.4557 9.9672
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352 large number of Gaussian integration points. This probably can be significantly remedied if one combines

353 Richardson�s extrapolation technique (Chapra and Canale, 1998) with the current method. Another im-

354 portant conclusion is that one needs to exercise caution in interpreting results of KI calculations via the

355 numerical limiting procedure in (18). It was demonstrated here that this procedure is very expensive for
356 accurate results. Finally, it was shown that accurate determination of KI value is not a necessary condition

357 for accurate stress calculations as long as the field point of interest is at a distance equal to or farther than

358 the average distance between collocation points along the crack length, as determined from the particular

359 solution method. This last conclusion has application to interaction problems of cracks with other defects

360 in an elastic medium. It is worth noting that all of the above discussion applies to Mode II cracks as well.

361 A last comment regards the applicability of the current method to cracks in finite domains and surface-

362 breaking cracks. In these two cases, the resulting Cauchy kernel is no longer of the simple kind found in Eq.

363 (1), rather it is of the ‘‘generalized’’ kind. The current method as presented herein is not formulated to treat
364 such crack problems with generalized Cauchy kernels, although in principle it can be extended to do so

365 owing to its pure numerical nature. However, such crack problems will undoubtedly be more complex with

366 harder to attain convergence (for example at the end point breaking a free surface). The reader is advised to

367 keep these important points in mind.
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