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Abstract

The elastic crack interaction with internal defects, such as microcracks, voids and rigid inclusions, is investigated in
this study for the purpose of analyzing crack propagation. The elastic stress field is obtained using linear theory of
elasticity for isotropic materials. The cracks are modeled as pile-ups of edge dislocations resulting into a coupled set of
integral equations, whose kernels are those of a dislocation in a medium with or without an inclusion or void. The
numerical solution of these equations gives the stress intensity factors and the complete stress field in the given domain.
The solution is valid for a general solid, however the propagation analysis is valid mostly for brittle materials. Among
different propagation models the ones based on maximum circumferential stress and minimum strain energy density
theories, are employed. A special emphasis is given to the estimation of the crack propagation direction that defines the
direction of crack branching or kinking. Once a propagation direction is determined, an improved model dealing with
kinked cracks must be employed to follow the propagation behavior. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Understanding failure and its driving mechanisms is very important for design engineers. It has been
widely observed that small defects, voids and cracks are mainly responsible for the initiation of failure.
Therefore it is very much desirable to understand the mechanical implications of these imperfections and to
establish a technique to model the process of initiation and progress of failure. Propagation of cracks is a
leading phenomenon in the fracture mechanics of brittle materials. While it can be thought of as being a
major driving mechanism in the failure process, it can also provide a toughening mechanism through
branching, kinking and propagation, as well as initiation of micro-cracks in all possible directions.
Therefore, the analysis of crack growth, interaction and crack stability, has been a major subject in fracture
mechanics research. There have been numerous studies since the early work of Griffith on the subject,
concentrating on branching, curving and kinking of cracks in isotropic and anisotropic solids [1-5]. The
major objective in most of these studies is to predict the conditions and path along which a crack prop-
agates. Associated field variables and resulting fracture parameters can be obtained by using advanced
computational techniques at each stage of propagation. Starting from a basic crack configuration, the
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kinking, branching or propagation direction can be estimated based on some criteria. Depending on the
material type, the most accurate propagation criteria can be chosen to estimate the propagation direction.
It must be noted that there are studies proposing general formulation of crack path analysis in the form of
displacement based boundary value problems [6]. These types of techniques are still in the development
stage and may be used in the case of multiple cracks.

It is well known that different crack propagation direction theories do not agree well in some cases. The
maximum circumferential stress theory, the minimum strain energy density theory and the maximum en-
ergy release rate theory are the most important and widely used ones among the theories on crack prop-
agation. Among these three theories, the first two are employed in this study. The third one and its modified
versions [7] that use G or J integral are not considered here since they are still surrounded with contro-
versies. Especially in mixed mode conditions the performance of the theory is not very good. Moreover it is
shown in [8] that the energy release rate (G) or J-integral could not yield the correct result of crack growth
under electric field reversal. The shortcomings of G or J appear especially in multiscale problems.

The propagation theories require calculation of the entire stress field. Therefore, the formulation of the
crack interaction problem for multiple planar cracks is presented, and the method to obtain the stress field
is developed. The number of cracks, their relative dimensions, orientations and locations are all variables of
the present formulation. It is not possible to present the crack propagation for all of these parameters.
Therefore, only some sample configurations are presented here and related crack propagation directions are
determined. These parameters are chosen in such a way that gives the best insight into the effect of in-
teraction to the propagation phenomena.

During crack propagation, the original crack geometry will change and strongly affect the fracture
parameters. Since it is almost impossible to develop a model that can include all possible changes of crack
geometry before hand, the process in general is carried out incrementally. Starting from a given crack shape
and size, all field variables and fracture parameters can be obtained, and this would enable one to determine
the possible crack growth direction(s) at a given state of stress. After determining the growth direction from
the tip, the next step is to extend the crack along that direction in a small amount and re-solve the crack
problem for the new configuration. This incremental process can be repeated until the crack becomes
sufficiently long or grows in an unstable manner.

The main goal in this study is to determine the effect of crack—defect interaction on the initial crack
propagation direction at a crack tip that is surrounded by other cracks or inclusions. In order to do that one
needs to obtain the elastic stress field in the presence of multiple cracks and/or inclusions or voids. The
following two sections are devoted to modeling this problem. First, a main crack interacting with multiple
cracks is considered. This is followed by the interaction of a crack with an inclusion. After presenting the
basic solutions for these cases, the propagation problem is addressed. The cracks are represented by dis-
location density distributions and a set of coupled integral equations is derived to find these densities that
are later used in the evaluation of the stress intensity factors. Shielding and amplification effects of addi-
tional cracks and nearby inclusion, depending on relative sizes, positions and orientations, are briefly
mentioned. A more complete analysis of the crack—crack interaction problem is presented in [9] while the
basic formulation of the crack—inclusion interaction is presented in [10]. The propagation behavior of a
crack near a void and inclusion is analyzed in [11] by using five different criteria. The minimum strain
energy density criterion is used in [12] to investigate the conditions under which the crack goes around or
runs into the inclusion. In this study, after introducing each criterion, the crack propagation direction at the
close tip of a crack near to other defects is investigated.

2. The crack—crack interaction problem

A number of finite cracks located in an infinite planar domain subjected to uniform stresses at infinity
are considered. The cracks are arbitrarily located relative to each other. Each mixed mode crack is
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represented by the distributions of dislocation densities composed of two components of Burgers vectors
corresponding to mode I and mode II which are represented by the indices n and ¢, respectively. The
formulation given in [9] can be repeated for M number of cracks. Applying the following boundary con-
ditions by choosing the global coordinate system based on the center of one of the cracks (referenced as
main crack)

Oy =00, On =Ty, Oy =0, atoo (1)

and condition of traction free crack surfaces requires that
t, =0, t. =0, (2)

where ¢, and ¢, represent normal and tangential tractions at the surfaces of ith crack, this leads to the
following set of integral equations:
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along with the additional complementary conditions

/ by (53) dsi = 0, / by (55) ds; = 0, (5)
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wherei=1,... Mandj=1,...,M. b, and b, are the dislocation density distributions corresponding to the
opening (mode I) and sliding (mode II) modes, respectively. The kernels K;; and L;; are functions of po-
sitions of crack i relative to crack j and the transformation angle of stresses. Their general form is given in
[9] and [22]. Note also that a; and g, are the half-lengths of ith and jth cracks. oy, and 1, are the traction
components on the positions of the crack surfaces in the flawless material due to of the external loading and
are given by

— 0), = —0( COS oclz + 10 sin 2a;,

(6)
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where o; is the inclination angle of the crack relative to the x-axis. The numerical solution of the above M-
coupled integral equations by any of the available methods for singular integral equations gives the dis-
location density distribution. Using these distributions, the components of the stress field at any point in the
domain can be obtained by adopting the expressions of [13] as follows:
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where D =2G/(n(k+ 1)) and x =3-4v for plane strain and x = (3 —v)/(1 +v) for plane stress.
xg =x;—s; and y; =y , x; and y; are local Cartesian coordinates of a point where the stresses are
calculated. b, and b,; are the transformed form of the normal an tangential components of Burgers
vectors.

3. The crack—inclusion/void interaction problem

The stress field in an infinite plane including a circular inclusion and a nearby crack subjected to uniaxial
stresses at infinity can be obtained in two steps by applying the superposition principle. The first part is the
stress field in an infinite plane with a circular inclusion subjected to a uniaxial state of stress oy applied at
infinity. This can be obtained using readily available solution for uniaxial stress case presented in [14] as
follows:
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where i=—2<G2—G1)/G1+K1G2, V:Gl(Kz—l)—Gz(Kl—1)/2G2+G1(K2—1), 52—(G2—G1)/
G| + k1G, , and ry is the radius of the inclusion, the origin of the polar coordinates is at the center of the
inclusion and 0 is measured from the direction of loading axis. G|, G, and k1, K, are the elastic constants of
the matrix and the inclusion, respectively. The second part is to model the crack as a pile-up of dislocations,
but now the stress field used is that of an edge dislocation near an inclusion which is given in [15], but
modified and written in the following form:
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where G terms are given in [16].

The integral equations for the crack—inclusion interaction case can be written using the above expres-
sions. Following the notation of [16] and observing that the singularities in the kernel come from the terms
containing x;/} and y /7 which are given as
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and after separating the singular terms, the singular integral equations representing the interaction case will
have the following form (see Fig. 13):
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and ! , a and a _are the stress components obtained from the solution without crack in the first part and

the kernels K;; are glven in Appendix A. Once the stress field from all defects is obtained, the stress intensity
factors can also be computed numerically as discussed in [21].

4. Crack propagation theories

There have been numerous crack initiation and/or propagation theories proposed over the years.
However, only a few of them have been proven to be viable and producing results that agree with some
experimental observations. The maximum circumferential stress theory, minimum strain energy density
theory and maximum strain energy release rate theory are considered to be the most important ones among
these theories. The first two criteria are used in the present study. However, because of the crack-tip sin-
gularity a cut off radius from the crack tip at which the stress is calculated is also introduced. As seen in the
calculations below this concept does not affect the propagation directions significantly.

4.1. Maximum circumferential stress (maximum normal stress) theory

The maximum circumferential (tangential) stress criterion proposed by Erdogan and Sih [17] is a
commonly recognized hypothesis for crack extension in a brittle material under slowly applied in-plane
loads. This criterion has later been derived based on the principle of minimum potential energy [18]. The
theory states that the direction of crack extension is in the radial direction from the crack tip and is normal
to the maximum tangential (circumferential or hoop) stress (ay) at the original crack tip. The results of this
theory are in remarkable agreement with slit cracks; however, the agreement is not so great for elliptical
cracks. Since the present model is developed for slit-like cracks, it will be convenient to use this crack
extension theory. Agreement in the case of elliptical cracks is also observed when higher order terms are
included in the stress expressions.

Following the developments of the Westergaard stress function, formulation for a crack in an infinite
plane close tip stress field for mixed mode cracks is given in the literature as follows [19]:
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K (] sin 0 + L sin 30 + Ko (1 cos 0 + 3 cos 30 (23)
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where r and 0 are the polar coordinates measured from the crack tip.

Finding the specific radial direction 6. which makes o4y maximum (or o, = 0) is a straightforward task
and is readily available in the literature. 6. is the angle that satisfies the following equation:

Kisin 6, + Kyj(3cos 6. — 1) = 0. (24)

The only needed parameters in a single mixed mode crack or multiple cracks are the stress intensity factors.
Once K; and Kj; are known, the possible propagation direction is obtained. It has also been observed that
the 0. direction coincides with the zero shear (principal) direction. However, all the above argument is true
for very small r, i.e. very close region to the crack tip where higher order terms are dropped and stress
expressions are approximate. Since the crack propagation process is analyzed right at the crack tip, the
above formulation gives reasonably accurate results as long as the stress intensity factors for different
situations are possible to calculate. The stress intensity factors at every crack tip, as well as extended stress
field, can be calculated in the present interaction case. Therefore, this criteria is applied in both closed form,
by substituting the stress intensity factors in the above expression and the numerical form by searching the
maximum values of g4 obtained from the application of distributed dislocations technique and determining
corresponding directions at “‘a certain distance”. It is found that the difference is negligible. This implies
that it is reasonable, at least initially, to concentrate mainly on the calculation of the stress intensity factors
that enable us to express the crack extension direction in closed form. On the other hand, the higher order
terms may become more important for elliptic cracks where the numerical values of the stress can still be
used. However, the present analysis is restricted to slit-like cracks.

The literature relevant to crack stability tends to interchange the maximum o4y model and the concept of
crack propagation in the direction where oy is principal stress. Although these two concepts may be
physically similar, they represent two different conditions. It is possible to have principal directions that are
not the direction of maximum circumferential stress especially at a certain distance form the crack tip. It is
observed in the present multiple crack interaction case that, at the very close tip region, maximum gy
directions are also principal directions. This criterion is applied to a static problem. When it comes to
dynamic crack problems where local stress parallel to the crack is greater than that normal to the crack, this
theory cannot produce accurate results.

4.2. Minimum strain energy density theory (S criterion)

The minimum strain energy density criterion, proposed by Sih [20], is based on the field strength of the
local strain energy density. A detailed discussion was presented in [21]. The main hypotheses of this theory
state that the crack will extend in the direction of minimum strain energy density and crack extension
occurs when this minimum strain energy density factor reaches a critical value (Sy,;, = S;;). S is defined such
that the I/r singularity is removed from the strain energy density function and is given as follows:

§= r(cil_plf = 10 (25)

Again, following the derivations related to a single crack in infinite plane, the strain energy density function
could be obtained by using the approximate values of close tip stresses [20]

S = ank; + 2anKiKy + anky, (26)

where
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ar :ﬁ[(K—COSQ)(I + cos 6)], (27)
ap = ﬁ sin0[2cos 0 — (x — 1)], (28)
ay = m[(KJr 1)(1 —cos ) + (1 4 cos0)(3cos O — 1)]. (29)

Using the above expressions, the polar angle (0,) corresponding to minimum Scan be obtained in closed
form. Similar to the previous criteria, once the stress intensity factors are obtained, it is possible to use
either the closed form expressions at the crack tip or to make a numerical search using the stress values at
certain distance from the crack tip. The latter one is more accurate. The closed form solution reveals that
the result is material parameter dependent. In the present study Poisson ratio v = 0.3 is used for all the
calculations.

In passing it is noted that when using the maximum energy release rate criteria the results show (not
reported herein) that the minimum rather than the maximum G or J produces propagation directions closer
to the ones found using the two criteria reported above.

5. Results and discussions
5.1. Crack—crack interaction

5.1.1. Two cracks

Two finite parallel cracks in a plane subjected to normal stresses to the main crack line at infinity, as seen
in Fig. 1, are analyzed first. The change in mode I and mode II stress intensity factors at the close tips of
these cracks are investigated. The contours of mode I stress intensity factor normalized by the stress in-
tensity factor in a single crack case are depicted in Fig. 2. Two different lengths are tried for the second
crack and it is observed that the general trend is similar. Therefore, crack propagation directions are an-

2a,
2a,
a
. Yo
Main crack i

[
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Fig. 1. Two finite crack in an infinite plane.
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Fig. 2. The contours showing the changes in the stress intensity factors of the right tip of the main crack when the positions of another
parallel crack is changed. Solid lines represent a, = a;, dotted lines represent a, = 0.1a;.

alyzed for the equal length cracks only. It must be noted here that X; and Y; are Cartesian coordinates
measured from the tip of one crack to the center of the second crack and normalized by the length of the
second crack. The contour line corresponding to K1 = 1 can be considered as a border between shielding
and amplification regions and named as neutral line in the related literature. Although a slight mode II
effect is observed due to interaction, it is not presented here because of its insignificant magnitude when
normalized as described above.

Figs. 3 and 4 are related to the crack propagation directions at the close tip of one crack corresponding
to different positions of a second crack. Fig. 3 shows the contour lines corresponding to crack propagation
directions according to the maximum circumferential stress theory. The cases based on maximum cir-
cumferential stresses at a distance from the crack tip and maximum circumferential stresses coinciding with
the maximum principal stress are plotted together. Fig. 4 shows crack propagation directions at the close
tip according to the minimum strain energy density theory. For this specific case, the two theories agree
reasonably. It can clearly be observed that crack propagation will be along the crack line in the amplifi-

Coordinate Y,

050 ‘ ’ L

050 000 050 100 150 200 250 300
Coordinate X_

Fig. 3. Contours of crack propagation directions according to maximum circumferential stress theory. Dotted lines are the contours of
the angles corresponding to the maximum value of the principal stress.
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Fig. 4. Contours of crack propagation directions according to minimum strain energy density criteria.

cation region. Crack kinking is mostly expected to happen in the shielding region where mode II effect is
relatively more pronounced.

In order to see the effect of changing the orientation of the neighboring crack on the crack propagation
directions, Figs. 5 and 6 are plotted to show the contours of propagation directions according to the two
different criteria, when the neighboring crack is rotated 30° counterclockwise. The results suggest that initial
kinking will be less severe and eventually crack would propagate parallel to the crack line rather than to be
pulled towards the neighboring crack. That is, the figures show smaller propagation angles in general,
forcing the main crack to propagate more in self-similar manner. Further analysis showed that the rotation
of the second crack loses its effect after 45° and eventually becomes ineffective at 90°.

The overall analysis shows that, depending on relative orientation, a neighboring crack will cause
shielding or amplification on the close tip of the main crack. This obviously depends on its location and
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Fig. 5. Contours of crack propagation angle when the second crack is inclined 30 (maximum circumferential stress).
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Fig. 6. Contours of crack propagation angle when the second crack is rotated 30 (minimum strain energy density).
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orientation. Propagation direction will mostly stay parallel to the main crack line in the amplification case,
however, when shielding is observed, the main crack is kinked towards the neighboring crack. The kinking
angle is related to the amount of shielding. A decrease in mode I stress intensity factor implies a stronger
mode II effect and the propagation angle increases.

5.1.2. Multiple cracks

All of the above cases were for two cracks only. When the number of neighboring cracks is increased and
distributed symmetrically around the horizontal axis, they would force self-similar propagation on the main
crack, which is a rather obvious conclusion. A more interesting case to analyze is the stacking of micro-
cracks near the main crack tip. Fixing X at a certain value and putting more parallel cracks at different
values of Y gives us the opportunity of observing the effect of an increasing number of micro-cracks
(parallel stacked cracks). Table 1 shows the values of left and right stress intensity factors (K, Kry) and
crack propagation directions for increasing numbers of parallel cracks at two different locations. Two
characteristic values of X are chosen as X; = 0 and X = 1, which are in shielding region and amplification
region, respectively. As the table indicates, an increasing number of stacked cracks did not change the crack
propagation directions and stress intensity factors significantly. However, shielding and amplification ef-
fects and distinct propagation directions in these two cases are clearly observable. Increasing the number of
neighboring cracks does not affect the main crack as long as they are symmetrically distributed along the
main crack line. When the symmetry is disturbed, kinking would start.

The present method is capable of analyzing randomly distributed cracks as well. Hence, using a random
crack generation model, similar to that discussed in [22], the effect of randomly generated micro-cracks
ahead of a main crack tip is analyzed. It is assumed that micro-cracks would nucleate ahead of a main crack
along grain boundaries that are represented by pre-assigned random orientations. The average crack length
assigned to a potential micro-crack represents the average length of a grain boundary. This length is as-
sumed to be 100 times smaller than the main crack length. The effect of randomly generated micro-cracks
on initial crack propagation direction is given in Fig. 7. The number of generated micro-cracks is deter-
mined at each load increment. As seen in the graph it is impossible to reach a meaningful conclusion in this
case. Depending on the number, positions and orientations of the nucleated micro-cracks, the propagation
direction would change. Different sets of randomly distributed micro-cracks produced similar effects and,
therefore, only one case is presented here. As shown above, the effect of the closer crack dominates in
general and the rest do not change that effect significantly. It is also shown that the three propagation
criteria produce very similar results when applied to the present case.

5.2. Crack—inclusion/void interaction

In this section, the crack propagation directions for a crack near a void or an inclusion are analyzed.
Although the subject is analyzed to some extent in some previous studies [10,11], the propagation behavior
of a crack near an inclusion must be examined in order to make the analysis complete and put all inter-
action cases into a perspective. The formulation presented in the above section is for a general inclusion.

Table 1

The effect of parallel crack stacking on the stress intensity factors and propagation angle
XL 0 1
M 1 2 3 4 1 2 3 4
Kri 0.454 0.457 0.453 0.448 1.389 1.348 1.333 1.323
K, 1.177 1.182 1.177 1.168 1.169 1.182 1.188 1.189

0. (deg) 36 36 36 36 14 14 16 16
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Fig. 7. (a) Randomly oriented microcracks ahead of a main crack. (b) Initial crack propagation directions at the main crack tip versus
number of randomly generated microcracks.

The limiting cases of an elastic inclusion will be a hole representing void and a rigid inclusion. These
limiting cases obviously correspond to setting the shear modulus of the inclusion equal to zero and infinity,
respectively. The present model calculates stress intensity factors as well as extended the stress field in the
case of crack—inclusion interaction. The values of the stress intensity factor are used to find the initial crack
propagation directions. The contours of propagation directions at the close tip of a horizontal crack (i.e.
the loading is perpendicular to the crack) near a hole are plotted in Figs. 8 and 9 for the two criteria used in
the present study. Here ““close tip” refers to the crack tip that is closer to the inclusion. The XT and YT
coordinates show the positions of the close tip of the crack. The different criteria give slightly different
results however the general trend is similar. The general trend is that the crack is pulled towards the hole as
expected.
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Fig. 8. (a) Parameters for the inclusion crack interaction problem. (b) The contours of initial crack propagation directions versus the
position of the close tip of a horizontal crack around a hole according to maximum circumferential stress theory.

Figs. 10 and 11 show the same contours around a rigid inclusion. The inclusion is modeled in the nu-
merical calculations by setting the ratio of the shear modulus of the inclusion and matrix u,/p; = 23 and
x; = 1.6 for the matrix and k, = 1.8 for the inclusion. These values are selected to make the results
comparable to those given in [9,10]. It can be deduced from the figures that the general effect of the
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Fig. 9. The contours of initial crack propagation directions versus the position of the close tip of a horizontal crack around a hole
according to minimum strain energy density theory (S criterion).

inclusion is to push the crack away except in the region along the centerline of the inclusion. In that region
the stress intensity factor is significantly amplified and mode II is negligible.

In conclusion, a general framework based on the theory of dislocation pile-up to investigate crack
propagation under mixed modes and in the presence of various other defects, micro-cracks, voids and or
inclusions has been developed. It is shown that the type of defect(s) and their location near the crack tip
have significant influence on crack initiation, propagation direction, and kinking. The numerical frame-
work developed here can be employed to investigate problems involving large numbers of defects of the
types considered in the present study. The present study lays the foundation of an extensive analysis of
crack propagation, coalescence and failure path and form prediction. Addition of the formulation of the
kinked crack solution is the step that could link this study to the next stage. An incremental analysis is
needed to follow the entire crack propagation path.
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Appendix A

The kernels of the integral equations (17) and (18) for the crack inclusion interaction case are (see Figs.
12 and 13):

Ky = F...cos’o + Foy sin® o + 2F, sina cos o,
K1y = Fy c08% o 4 F,, sin” o ++ 2F,, sin o cos ,
Ky = (Fyy — Fu) sino cos o + Exy(cos2 o — sin® ),
Ky = (Fyy — Fy) sin o cos o + F,, (cos® o — sin” t),

with (see also [13])
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Fig. 11. The contours of initial crack propagation directions versus the position of the close tip of a horizontal crack around a rigid
inclusion according to minimum strain energy density theory (S criterion).
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Fig. 12. Dislocation near a void or inclusion.
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Fig. 13. Crack near a void or inclusion.
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d>—1
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140) d
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where o and f§ are Dundurs parameters that are defined as:

Gz(K1+1)—G1(K2+1) Gz(Kl—l)—Gl(Kz—l)

a:Gz(K1+1)+G1(K2+1)’ ﬁ:Gz(K1+1)+G1(K2+1).
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